Discovery of Linear Non-Gaussian Acyclic Models in the Presence of Latent Classes

نویسندگان

  • Shohei Shimizu
  • Aapo Hyvärinen
چکیده

An effective way to examine causality is to conduct an experiment with random assignment. However, in many cases it is impossible or too expensive to perform controlled experiments, and hence one often has to resort to methods for discovering good initial causal models from data which do not come from such controlled experiments. We have recently proposed such a discovery method based on independent component analysis (ICA) called LiNGAM and shown how to completely identify the data generating process under the assumptions of linearity, non-gaussianity, and no latent variables. In this paper, after briefly recapitulating this approach, we extend the framework to cases where latent classes (hidden groups) are present. The model identification can be accomplished using a method based on ICA mixtures. Simulations confirm the validity of the proposed method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation

 Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...

متن کامل

Causal Discovery for Linear Non-Gaussian Acyclic Models in the Presence of Latent Gaussian Confounders

LiNGAM has been successfully applied to casual inferences of some real world problems. Nevertheless, basic LiNGAM assumes that there is no latent confounder of the observed variables, which may not hold as the confounding effect is quite common in the real world. Causal discovery for LiNGAM in the presence of latent confounders is a more significant and challenging problem. In this paper, we pr...

متن کامل

Estimation of linear non-Gaussian acyclic models for latent factors

Many methods have been proposed for discovery of causal relations among observed variables. But one often wants to discover causal relations among latent factors rather than observed variables. Some methods have been proposed to estimate linear acyclic models for latent factors that are measured by observed variables. However, most of the methods use data covariance structure alone for model id...

متن کامل

A comparison of algorithms for maximum likelihood estimation of Spatial GLM models

In spatial generalized linear mixed models, spatial correlation is assumed by adding normal latent variables to the model. In these models because of the non-Gaussian spatial response and the presence of latent variables the likelihood function cannot usually be given in a closed form, thus the maximum likelihood approach is very challenging. The main purpose of this paper is to introduce two n...

متن کامل

Discovery of linear acyclic models in the presence of latent classes using ICA mixtures

Causal discovery is the task of finding plausible causal relationships from statistical data. Such methods rely on various assumptions about the data generating process to identify it from uncontrolled observations. We have recently proposed a causal discovery method based on independent component analysis (ICA) called LiNGAM, showing how to completely identify the data generating process under...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007